FSpH: Fitted spectral hashing for efficient similarity search
نویسندگان
چکیده
منابع مشابه
Hashing for Similarity Search: A Survey
Similarity search (nearest neighbor search) is a problem of pursuing the data items whose distances to a query item are the smallest from a large database. Various methods have been developed to address this problem, and recently a lot of efforts have been devoted to approximate search. In this paper, we present a survey on one of the main solutions, hashing, which has been widely studied since...
متن کاملRanking Preserving Hashing for Fast Similarity Search
Hashing method becomes popular for large scale similarity search due to its storage and computational efficiency. Many machine learning techniques, ranging from unsupervised to supervised, have been proposed to design compact hashing codes. Most of the existing hashing methods generate binary codes to efficiently find similar data examples to a query. However, the ranking accuracy among the ret...
متن کاملDeep Hashing Network for Efficient Similarity Retrieval
Due to the storage and retrieval efficiency, hashing has been widely deployed to approximate nearest neighbor search for large-scale multimedia retrieval. Supervised hashing, which improves the quality of hash coding by exploiting the semantic similarity on data pairs, has received increasing attention recently. For most existing supervised hashing methods for image retrieval, an image is first...
متن کاملSimilarity Search in High Dimensions via Hashing
The nearestor near-neighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over high-dimensional data, e.g., image databases, document collections, time-series databases, and genome databases. Unfortunately, all known...
متن کاملCosine Similarity Search with Multi Index Hashing
Due to rapid development of the Internet, recent years have witnessed an explosion in the rate of data generation. Dealing with data at current scales brings up unprecedented challenges. From the algorithmic view point, executing existing linear algorithms in information retrieval and machine learning on such tremendous amounts of data incur intolerable computational and storage costs. To addre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Vision and Image Understanding
سال: 2014
ISSN: 1077-3142
DOI: 10.1016/j.cviu.2014.01.011